The error Δl of the resonance length l has two components; i.e. the reading error (Δl_1) of the instrument used to measure l , and the error due to the uncertainty in obtaining the resonance state
(Δl_2) . How would you experimentally determine Δl_2 ?
<u></u>
- V
$\frac{1}{2}$
P
1000 Ω
E_2
shows an incomplete diagram of an experimental set-up of a potentiometer arrangement used to
the e.m.f. E_1 and E_2 of two cells. PQ is a wire of length 1 m and resistance of 20 Ω . If Z represent a 2 V accumulator, a switch, and a centre zero galvanometer respectively. S is key.
X implete the arrangement by connecting the items X , Y and Z to the circuit with lines.
In order to perform this experiment the magnitudes of E_1 and E_2 must satisfy a certain requirement e.m.f. of X . What is it?
Books
TOO VOIL SULL
You suggest a tap-key (T) shown in the figure to the accumulator (Yes/No). State the reason.
E9
wage.
teason as to why a much thicker wire of the same material should not be used as the
Wire,
卷··

(<i>e</i>)	List the essential steps that you would perform when obtaining a balanced length.
5	
(f)	Write down an expression relating E_1 , E_2 and their corresponding balanced lengths l_1 and l_2
40.000	E_1
(g)	If you want to determine the value for the ratio $\frac{E_1}{E_2}$ by plotting a suitable graph, state w
	modification you would propose to the circuit.
(h)	When a student began to perform the experiment as mentioned in (g) above, he found that t
(,,,	lowest pair of values that he could obtain for l_1 and l_2 were closer to 100 cm. As a result he w
	unable to obtain a good set of measurements to plot a graph. How would you overcome this proble
	experimentally?